我用 NotebookLM 搭建 AI 稍後閱讀、學習輸出工作流,操作教學與延伸應用
古老的 Pocket 稍後閱讀工具最近決定收攤,近年火紅的 Readweise reader 我付費使用一段時間後,又覺得自己用不到那麼多功能,目前我的閱讀與過濾資訊方式,更像我之前寫的這幾篇文章:「如何過濾資訊與稍後閱讀?2022年五個克服資訊爆炸的學習技巧」、「從讀不完的稍後閱讀轉念:當下讀完,當下處理」,雖然有收集資訊的流程,但更聚焦在之後的輸出與任務上,而非在建構大量稍後閱讀的資料庫。所以,大多時候我反而沒有使用特定的稍後閱讀工具來整理資訊,因為最後的「任務輸出整理工具」才是我更想建立的第二大腦。
大方向上,我希望資訊不要停留在稍後閱讀、知識庫中太久,應更快進入「專案、任務筆記」中。
所以最近我在嘗試利用「 Google NotebookLM 」作為我的「稍後閱讀緩衝跳板」,把當下無法細讀的資訊放入,利用 NotebookLM 內建的許多優秀 AI 索引、摘要、整理功能,加快把雜亂資訊輸出成有效筆記、任務的過程。
今天這篇文章,跟大家分享我的實際「 NotebookLM 稍後閱讀」工作流程。
用 NotebookLM 稍後閱讀的核心流程,基本操作教學:
下面是我目前每天、每周會重複循環的 NotebookLM 稍後閱讀流程:
- 每天隨意瀏覽資訊時,把有興趣的文章、影片先傳入 NotebookLM。
- 下一次空檔時,點開 NotebookLM ,快速看過 AI 自動產生的各項中文摘要。
- 針對摘要後還想深入了解的文章,進行 AI 問答,並產出筆記。
- 把筆記匯入自己真正的專案任務第二大腦( Evernote )永久管理。
- 一段時間後,把這個 NotebookLM 刪掉,再建立一個新的稍後閱讀跳板。
現在有許多工具,可以讓我實現「隨手」把「網頁文章、YouTube影片、PDF文件」等等需要稍後閱讀的內容丟進 NotebookLM 中,這樣一來, NotebookLM 也可以是一個簡單實用的稍後閱讀收集載體。
例如在手機上,最新推出的 NotebookLM App 可以讓手機上的內容隨手分享到資料庫記事本中。
在電腦端,我會安裝「 NotebookLM 網頁匯入器 」的 Chrome 瀏覽器外掛,也可以一鍵把網頁文章、 YouTube 影片網址丟進 NotebookLM。
如果是 PDF 文件,例如論文、研究報告,我也可以上傳到 NotebookLM 做統整。這樣一來,其實 NotebookLM 也可以看做一個頗為全面的稍後閱讀收集工具。
這些內容隨手丟進 NotebookLM 時,通常我不會特別做分類,就先統一丟進一個「我的稍後閱讀」記事本中,因為我的目的是快速輸出,輸出後就會放入我目前使用的 Evernote 真正的專案整理架構 ,因此不需要在 NotebookLM (或稍後閱讀工具)花太多時間。
並且我通常每一個禮拜(七天左右,大概會收集30~50篇文章),就把這個「我的稍後閱讀」記事本「直接刪除」,然後再建立一個新的「我的稍後閱讀」記事本,處理新的一周的稍後閱讀文章。
利用接下來的空檔,在手機上打開 NotebookLM App ,或是在電腦上打開網頁,點開任何一篇之前收進來的文章、影片、PDF,就會看到預設已經分析好的「中文摘要」。
各國語言的文章、影片,都會自動完成中文摘要,幫助我快速了解文章主題,判斷是否有興趣繼續往下閱讀。
雖然在 NotebookLM 的這個記事本已經匯入大量文章,但我有時候會先取消勾選所有文章,然後反過來「只勾選」看完中文摘要後特別有興趣的一兩篇文章(尤其是長文章),開始針對這一兩篇文章做深入的 AI 索引與問答。
所以無論是要針對單篇、多篇、整個稍後閱讀清單做 AI 資料分析,都能在 NotebookLM 被輕鬆滿足。
而 AI 分析出來的摘要、筆記或任務企劃,我則會複製到 Evernote 中長久保存。
如果說在這樣每日 AI 輔助稍後閱讀的過程中,發現自己想要「深入探索」的新主題,例如先隨手丟幾篇看到後感興趣的醫療文章進來「我的稍後閱讀」記事本,讀一讀發現對健康新生活主題有興趣,接下來一段時間想要「繼續探索更多相關資料」,這時候我才會建立一個「新主題的記事本」,以後相關主題的稍後閱讀文章就丟進這個新主題的 NotebookLM 記事本中處理。
應用一:轉換成 Podcast ,用聽的也能理解今天感興趣的各種文章內容
除了上述基本的 NotebookLM 稍後閱讀流程,我還會在有時間、有想法時,做下面這樣延伸應用。
因應 NotebookLM 最近推出:「NotebookLM 語音摘要支援生成台灣中文對話 Podcast!口音節奏都很逼真」,我也用來生成稍後閱讀文章的「語音摘要」。
例如我收集了幾篇跟時間管理有關的新文章,還有幾篇跟 AI 趨勢相關的文章,還有一篇比較有趣的電影心得報導。到了中午午休,我就按下 NotebookLM 上的「語音摘要」,通常在不用特別自訂指令的情況下,就會生成一段兩人中文對話的 Podcast,而內容就是像新聞摘要報導一樣,會跟我介紹這幾個不同主題的內容。
現在更棒的是,在 NotebookLM 手機 App 上,也可以聆聽這一段大約 8~10 分鐘的 Podcast ,幫助我用「聽的」,快速消化早上收集的多篇文章重點內容。
有時候昨天收集的舊文章已經聽過 Podcast ,如果今天又有新的收集文章,我會先刪掉前次生成的對話節目,然後「只勾選」新文章的項目,就能重新生成「針對新文章」的 podcast。
應用二:針對感興趣主題,利用「探索」搜尋更多相關資料後,進行分析
NotebookLM 的「探索」功能可以在這個稍後閱讀流程發揮很大效用(延伸閱讀:Google NotebookLM 自動搜尋匯入影片文章!幫老師、學生無痛建立研究資料庫)。
例如我在 NotebookLM 上讀到最近一篇文章,跟如何用心理學原理設計 AI 指令有關,我覺得很有意思,還想要深入挖掘更多想法。
於是我打開 NotebookLM 左上方的「探索」,打下幾個 Google 搜尋指令,讓 AI 幫我去挖掘更多的資料來源。
在找到的來源中,我會主動過濾,只勾選自己真正感興趣的幾篇文章,繼續匯入這個「稍後閱讀」資料庫中,然後利用上述方式來閱讀、處理。
應用三:讓 AI 整理、延伸需要的知識、任務筆記,放入筆記系統
當我真正讀到一篇覺得有用的文章時,我會用下面幾種方式,請 AI 將文章整理成真正有用的筆記,而這是我覺得用 NotebookLM 做稍後閱讀工具時最棒的一點,因為我需要的就是「可以使用的筆記」:
- 單純整理重點摘要
- 變成自己需要的知識筆記架構
- 延伸對任務應用的思考
- 進行反思與討論
有時候文章已經很棒,我會請 NotebookLM 針對這一篇或這幾篇文章(可以在左方資料清單勾選),協助摘要出內容當中的細節。這時候的目的是盡量保留原文中的內容(但預設都自動進行中文翻譯),放入我的筆記(Evernote)後可以更有效參考原始資料。
當有多篇文章有用時,我喜歡勾選這幾篇,然後讓 NotebookLM 用表格整理與比較,快速完成綜合不同想法的知識筆記。
如果某篇文章已經讓我可以聯想到某個具體任務,我會讓 NotebookLM AI 幫我思考如何實作的步驟,這時候整理出來的就更接近可以放入任務筆記的操作內容。
甚至我可以跟 AI 對話,討論自己的延伸想法,請 AI 去跟原始文章做辯證,然後統整出可以放入我自己的思考筆記的反思內容。
應用四:結合整套 Google Gemini 流程提升文獻整理效率
還有一些更進階的搭配用法,利用 Google Gemini 互相搭配的幾個工具,我可以這樣做:
- 在 NotebookLM 稍後閱讀處理時,發現有一個主題可以深入分析。
- 打開 Gemini Deep Research 針對這個主題做深度研究。
- 把深度研究報告匯出成 Google 文件,再把 Google 文件直接匯入 NotebookLM。
- 再次利用上述技巧,在 NotebookLM 中完成閱讀、聆聽、筆記處理。
例如讀到某篇健康文章,但第一時間沒有找到更完整的報告,那麼不如讓 Gemini Deep Research 直接寫一篇。
但現在我會把 NotebookLM 生成的學習指南,複製到 Gemini ,利用 Canvas 中的測驗功能,生成可互動測驗,這樣就能更有趣、有效地完成複習。(延伸閱讀:個人學習、考試新利器! Google Gemini 測驗功能,一次完成知識研究、出題、複習)
測驗的目的,是快速讓 Gemini AI 分析出我在這個主題上,哪一個領域還可以深入研究?
以上,就是我最近利用 Google NotebookLM 搭建的一個稍後閱讀、學習輸出的工作流程,我覺得非常有效,也節省很多時間,提供各位讀者參考。
大家好,我是電腦玩物站長 Esor ,歡迎參考我的系列課程與書籍:
- 2024/6 最新著作上市,歡迎支持:《高效人生工作法圖解》
- 「個人數位生產力」線上課程(可使用電腦玩物老讀者折扣碼 ESOR500 ,獲得 500 元折價喔!)。
- 時間管理、筆記系統、AI 工具相關課程:「課程介紹連結」
- 著作:《防彈筆記法》
- 訂閱追蹤 podcast 節目:「高效人生商學院」(Apple podcast 訂閱、 Google Podcast 訂閱)
- 訂閱「電腦玩物電子報」,不定期出刊。
我的電子郵件是 esorhjy@gmail.com ,如果你有任何關於筆記術、時間管理、提升工作效率的問題,歡迎寫信跟我討論。
(歡迎社群分享。但全文轉載請來信詢問,禁止修改上述內文,禁止商業使用,並且必須註明來自電腦玩物原創作者 esor huang 異塵行者,及附上原文連結:我用 NotebookLM 搭建 AI 稍後閱讀、學習輸出工作流,操作教學與延伸應用)
留言
張貼留言
為了避免垃圾廣告留言過多,開始測試「留言管理」機制,讓我可以更容易回應讀者留言,並更簡單過濾掉廣告,但只要不是廣告留言都會通過審核。